CONTROL BIOLÓGICO DE TRIPS Y CHANCHITOS BLANCOS EN PALTOS

Foto 1. Chanchito blanco de cola larga, Pseudococcus longispinus.

Foto 2. Chanchito blanco, Pseudococcus calceolariae.

Foto 3. Larva de Cryptolaemus montrouzieri, depredador de chanchitos blancos.

Foto 4. Larva de Sympherobius sp. alimentándose de masa de huevos de chanchitos.

La superficie cultivada con palto ha experimentado un crecimiento sostenido en los últimos 10 años. De 15.000 hectáreas (ha), en 1996, pasó a 26.700 ha, en 2005. En lo económico, se perfila como uno de los principales generadores de divisas para el país después de la uva de mesa y la manzana, con más de US\$165 millones FOB y un volumen de 135 millones de kilos exportados (ODEPA, 2005).

La gran mayoría de las nuevas plantaciones ha sido realizada a mayores densidades que las tradicionales y está situada en laderas de cerro, donde el clima es más favorable para el cultivo. Sin embargo, en esas condiciones au-

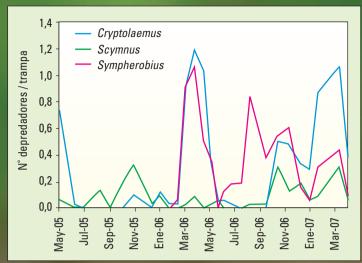
menta la dificultad de controlar las plagas mediante métodos químicos que utilizan maquinaria tradi-

INIA La Cruz a través del proyecto FONDEF "Desarrollo de tecnologías limpias para el control de plagas en la producción de paltas de exportación" (2005-2008), estudia la fenología de las plagas del palto y la efectividad de los enemigos naturales presentes, evaluando además la necesidad de internación de especies foráneas que han sido exitosas en otras áreas del mundo.

Chanchitos blancos

En los muestreos realizados se ha

detectado dos especies asociadas al palto, el chanchito blanco de cola larga Pseudococcus longispinus (foto 1) y P. calceolariae (foto


Es común que ambas especies coexistan en el huerto, siendo controladas por varios enemigos naturales, parte de ellos comunes a las dos especies. A pesar de no causar daños directos graves en la producción, estos insectos en estadios ninfales eventualmente provocan rechazos cuarentenarios, ya que es muy complejo diferenciarlos de otras especies que sí poseen una connotación cuarentenaria para los países de destino. También, en densidades altas,

El manejo de chanchitos blancos en el palto debe basarse en el monitoreo de la plaga, sus enemigos naturales y la flora acompañante. Se deben realizar aplicaciones químicas sólo ante ataques intensos y/o escasez de control biológico. En cuanto al trips del palto, también hay que utilizar estrategias integradas, que incluyen liberaciones de Thripobius semiluteus, intensificación del monitoreo en período crítico de infestación de frutos y control químico al detectarse los primeros individuos en la fruta nueva.

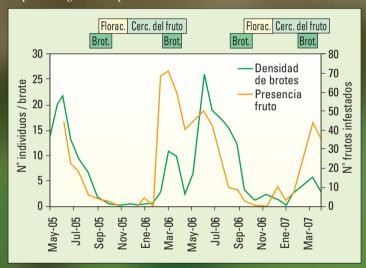

> Pilar Larral D. plarral@inia.cl Renato Ripa S. José Montenegro M. Viviana Guajardo T. Patricia Véliz R. INIA La Cruz

Figura 1. Abundancia de depredadores de chanchitos blancos en trampas de agregación en paltos. Región de Valparaíso.

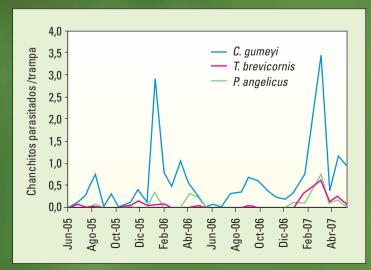

pueden provocar manchado de la fruta por efecto de las secreciones

Figura 2. Presencia de chanchito blanco en frutos y su abundancia en brotes de paltos. Región de Valparaíso.

Figura 3. Abundancia de chanchitos blancos "momificados" por distintos parasitoides en trampas de agregación instaladas en palto. Región de Valparaíso.

pueden provocar manchado de la fruta por efecto de las secreciones azucaradas que expelen y el desarrollo de hongos saprófitos (fumagina).

En la Región de Valparaíso, durante más de dos años se ha realizado un seguimiento de la fenología de la plaga y sus enemigos naturales en frutos, brotes, y trampas de agregación (cartón corrugado en el tronco), en ausencia de aplicaciones de pesticidas.

En las trampas de agregación se encontró la mayor abundancia de chanchitos blancos y sus controladores biológicos en comparación a brotes y frutos, debido a que entregan condiciones ambientales apropiadas para ciertos estadios de la plaga, los que prefieren localizarse en sitios protegidos. En estos refugios es común encontrar hembras oviponiendo, chanchitos parasitados y distintos estados de sus depredadores.

Depredadores: por su abundancia, destacan *Cryptolaemus montrouzieri* (foto 3), *Sympherobius* (foto 4) y *Scymnus*. También se encuentra presente *Chrysoperla* sp., pero en menor número.

La densidad de *Cryptolaemus* aumenta en otoño, período en el cual existe la máxima abundancia de la plaga en el árbol. *Sympherobius* presenta un patrón similar a *Cryp*-

tolaemus, es decir dependiente de la densidad de la plaga en la planta. La presencia de *Scymnus* es más estable a través del año, pero en menor proporción que los anteriores (figura 1). En las tres especies la larva fue el estado más frecuente en las trampas. La máxima densidad de estos depredadores coincide con la mayor concentración de chanchitos blancos en brotes y frutos (figura 2).

Parasitoides: corresponden a microavispas endoparásitas (foto 5), o sea aquellas que colocan un huevo en el interior del cuerpo de su hospedero. Después de un tiempo, en el cual la larva del parásito se desarrolla a expensas del chanchito, éste cambia de aspecto y pasa a denominarse "momia" (foto 6), estado relativamente fácil de reconocer en el monitoreo.

Las especies detectadas en mayor proporción son *Coccophagus gurneyi, Pseudaphycus* sp. y *Tetracnemoidea brevicornis*. Con menor frecuencia se registra *Aenasius punctatus*. Éste último, junto a *Pseudaphycus*, sólo parasitan al chanchito de cola larga. Al igual que los depredadores, el período de mayor presencia de parasitismo en las plantas es cuando la plaga alcanza las poblaciones más altas (figuras 2 y 3), confirmando la relación de denso-dependencia entre los parasitoides y los chanchitos

Foto 5. Coccophagus gurneyi parasitando un chanchito de cola larga.

Foto 6. Aspecto de chanchito "momificado" por el parasitoide Tetracnemoidea brevicornis.

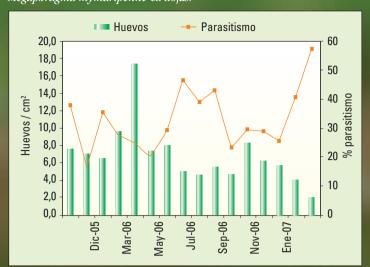
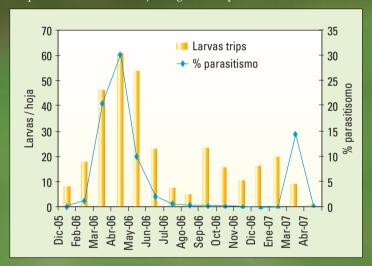



Figura 5. Densidad de larvas de trips del palto y nivel de parasitismo de Thripobius semiluteus en hojas. Región de Valparaíso.

Los parasitoides mencionados actúan principalmente sobre estadios pequeños de la plaga (estadios 1 y 2), por esta razón y considerando la relevancia de la plaga, INIA La Cruz ha internado desde Holanda Anagyrus fusciventris, parasitoide de estadios más desarrollados. Actualmente se encuentra en cuarentena.

A pesar del número de especies de enemigos naturales que tienen los chanchitos blancos en paltos, ocasionalmente la plaga alcanza altas densidades, que infestan una importante cantidad de frutos (más del 70% en marzo de 2006, figura 2), en el período de crecimiento.

No obstante, la densidad de la pla-

ga disminuye progresivamente en invierno. Llega al periodo de cosecha con niveles muy bajos, situación favorable para el manejo de la plaga. Esta disminución puede tener su origen, entre otros factores, en condiciones climáticas adversas, acción de los enemigos naturales y cambios fisiológicos en la planta.

En conclusión, el manejo de chanchitos blancos en palto debe basarse en el monitoreo de la plaga, sus enemigos naturales en el árbol y la flora acompañante. Se debe realizar aplicaciones químicas sólo ante ataques intensos y/o escasez de control biológico, que impliquen riesgo de debilitamiento de la planta y manchado de la fruta.

Foto 7. Larva y adulto de trips del palto, Heliothrips haemorrhoidalis.

Foto 8. Thripobius semiluteus, avispita parasitoide de larvas de trips del palto.

Trips del palto

En los últimos 15 años, el trips del palto, Heliothrips haemorrhoidalis (foto 7) ha ido incrementando su importancia económica. El daño tipo "cuerudo" o "russet" que provoca en el fruto causa el descarte para la exportación y reduce su valor comercial en Chile.

El número de especies benéficas asociadas al trips del palto en el país es escaso. Se ha registrado muy ocasionalmente la presencia de los depredadores Aeolothrips sp. y Chrysoperla sp. en el campo, estimándose que su acción es marginal.

En cuanto a parasitoides, se confirmó la presencia de la microavispa Megaphragma mymaripennis. Ésta se desarrolla en los huevos de trips del palto, los cuales se encuentran encastrados en el tejido de hojas y frutos. Con muestreos en distintos huertos de la Región de Valparaíso se ha constatado que sólo se presenta en huertos no intervenidos o escasamente intervenidos con pesticidas.

En la figura 4 se indican los resultados de un muestreo donde los niveles de parasitismo de huevos en promedio alcanzan un 33% en las hojas, aunque el ataque fue intenso en hojas y frutos. De acuerdo a este y otros muestreos realizados en paltos, se considera que el efecto de M. mymaripennis sobre la densidad del trips es escaso.

Importación de parásito de larvas: en el año 2003, INIA La Cruz importó desde Nueva Zelanda, el parasitoide *Thripobius semiluteus* (foto 8), avispita que pone sus huevos en las larvas de trips causándoles la muerte. Este insecto ha sido liberado en la Región de Valparaíso y se ha comprobado su establecimiento. En la actualidad INIA está perfeccionando su crianza, métodos de liberación y evaluando su efectividad.

Los resultados preliminares del seguimiento realizado a un sitio de liberación del parasitoide (figura 5), muestran una mayor densidad de *T. semiluteus* en otoño, período que coincide con las más altas densidades de trips en la planta (figura 4).

Durante la primavera y el verano de la temporada 2006/07 no se observó el parasitoide, volviéndose a detectar en los muestreos de abril de 2007. Cabe destacar que las densidades de la plaga han disminuido progresivamente, para llegar a niveles muy bajos en el otoño de la segunda temporada, época en la que se esperaba un aumento de la densidad, en ausencia de *T. semiluteus*, de acuerdo a la fluctuación poblacional observada durante las temporadas anteriores.

En liberaciones realizadas en eucaliptos muy infestados con trips del palto, no se observó el establecimiento del parasitoide. No obstante los huevos del trips son parasitados por *M. mymaripennis*, razón por la cual este árbol no sería un reservorio para *T. semiluteus*

Al igual que para chanchito, el manejo del trips debe basarse en estrategias integradas, entre las que destacan:

- Monitorear la plaga y la actividad de sus enemigos naturales, intensificar esta actividad en período crítico de infestación de frutos, cercano a los 2 cm de diámetro ecuatorial.
- Ante la ausencia de enemigos naturales, realizar liberaciones de *T. semiluteus*.
- Eliminar hospederos alternativos de la plaga o bien controlar la plaga en ellos, por ejemplo, en las hojas basales de eucaliptos con trips.
- Con prácticas de poda mantener la planta con buena aireación y evitar el exceso de humedad.
- Cosechar toda la fruta, evitando dejar un inóculo de la plaga.
- Realizar control químico al detectarse los primeros individuos en la fruta nueva. Tar

CONTROL BIOLÓGICO DE LA FALSA ARAÑITA DE LA VID EN VIÑAS

Robinson Vargas M.

Ingeniero Agrónomo, Ph.D. rvargas@inia.cl

Natalia Olivares P.

Ingeniera Agrónoma

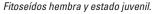
La falsa arañita de la vid, *Brevipalpus chilensis* Baker, es una plaga que causa graves pérdidas económicas. Cuando atacan a los brotes, hojas y sarmientos de la planta, afecta seriamente la capacidad fotosintética de ella, llegando a disminuir hasta en un 40% el rendimiento. La falsa arañita es un ácaro fitófago nativo presente en uva de mesa, uva vinífera, kiwi, chirimoyo, cítricos y algunas malezas como correhuela, malva, diente de león, paico y palqui.

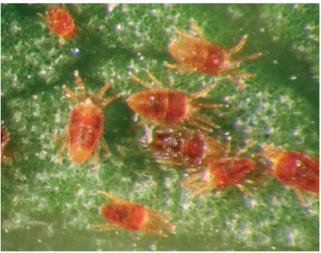
Esta plaga es considerada cuarentenaria en todos los países donde exportamos nuestros productos agrícolas frescos, lo que ha obligado a controlarla químicamente, tanto en pre como en poscosecha.

Biología y fenología

En viñedos del valle de Casablanca se determinó cinco generaciones entre septiembre y marzo. Durante cada temporada se observa

un traslape de sus estados de desarrollo. Cada hembra puede oviponer hasta 250 huevos durante su ciclo de vida. La hembra inicia el daño en la planta al terminar su período de hibernación, desplazándose hacia las primeras estructuras vegetativas en desarrollo (brotes, tallos y primeras hojas) para alimentarse. Allí ovipone, dando origen a la primera generación, la que coloniza las hojas y les causa bronceamiento. En ataques severos se establece en los racimos, donde provoca necrosis en el raquis.


Monitoreo


El monitoreo debe realizarse durante toda la temporada, desde inicio de brotación hasta el período de cosecha. La unidad de muestreo varía de acuerdo a su ubicación en la planta: en brotación debe inspeccionarse el ritidomo cercano a los brotes nuevos, las yemas y terminales. Posteriormente deben revisarse los cargadores, hojas y , finalmente, los racimos.

Control biológico

En viñas el control biológico natural de *B. chilensis* es efectuado principalmente por ácaros depredadores de la familia Phytoseiidae, entre ellos *Neoseiulus californicus* =

Adulto de Brevipalpus chilensis.